Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds

نویسندگان

چکیده

In 2020, Oh and Thomas constructed a virtual cycle [ X stretchy="false">] v mathvariant="normal">i mathvariant="normal">r ∈ A ∗ encoding="application/x-tex">X(\sigma ) an isotropic cosection alttext="sigma"> encoding="application/x-tex">\sigma obstruction sheaf O b O b encoding="application/x-tex">Ob_X construct localized l o c right-parenthesis mathvariant="normal">l mathvariant="normal">o mathvariant="normal">c _\mathrm {loc}\in A_*(X(\sigma )) . This is achieved by further localizing Oh-Thomas class Edidin-Graham’s square root Euler special orthogonal bundle. When surjective so vanishes, reduced e d r"> mathvariant="normal">e mathvariant="normal">d _{\mathrm {red}} As application, vanishing results hyperkähler 4-folds. All these hold structure K-theoretic invariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Donaldson-Thomas invariants of Calabi-Yau threefolds

Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants of Calabi-Yau threefolds are compared. In certain situations, the Donaldson-Thomas invariants are very easy to handle, sometimes easier than the other invariants. This point is illustrated in several ways, especially by revisiting computations of Gopakumar-Vafa invariants by Katz, Klemm, and Vafa in a rigorous mathematical framework...

متن کامل

2 00 7 Enumerative geometry of Calabi - Yau 4 - folds

Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation. Several local Calabi-Ya...

متن کامل

Super-rigid Donaldson-Thomas Invariants

We solve the part of the Donaldson-Thomas theory of Calabi-Yau threefolds which comes from super-rigid rational curves. As an application, we prove a version of the conjectural Gromov-Witten/DonaldsonThomas correspondence of [MNOP] for contributions from super-rigid rational curves. In particular, we prove the full GW/DT correspondence for the quintic threefold in degrees one and two.

متن کامل

Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds

We derive in the SCFT and low energy effective action frameworks the necessary and sufficient conditions for supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4-folds. We show that the Cayley cycles in Spin(7) holonomy eight-manifolds and the associative and coassociative cycles in G2 holonomy seven-manifolds preserve half of the space-time supersymmetry. We find that while...

متن کامل

Enumerative Geometry of Calabi-Yau 5-Folds

The original recursions for A2(d) ≡ nd(ψ̃, H) and B1(d1, d2) ≡ nd1d2(|;H2) do not involve any of the other terms. Using Lemma 1, the formulas (A.2) and (A.3) can be shown to satisfy the two recursions. The original formula for A1(d) ≡ nd(ψ̃H) expresses A1(d) in terms of B1(d1, d2). The formula (A.1) follows from (A.3) and Lemma 2. Originally, there are also the terms nd(ψ̃H,H ), but it is not hard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Geometry

سال: 2023

ISSN: ['1534-7486', '1056-3911']

DOI: https://doi.org/10.1090/jag/816